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Introduction

Remember the dynamics:

• Langevin dynamics:

{
dX t = M−1

Pt dt

dPt = −∇V (X t) dt − γM−1
Pt dt +

√
2γβ−1dW t

where γ > 0 and β = (kBT )−1.

• overdamped Langevin (or gradient) dynamics:

dX t = −∇V (X t) dt +
√

2β−1dW t .
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Introduction

These dynamics are used to compute macroscopic quantities:

(i) Thermodynamic quantities (averages wrt ν of some
observables): stress, heat capacity, free energy,...

Eν(ϕ(X )) =

∫

Rd

ϕ(x) ν(dx) ≃ 1

T

∫ T

0

ϕ(X t) dt.

(ii) Dynamical quantities (averages over trajectories): diffusion
coefficients, viscosity, transition rates,...

E(F((X t)t≥0)) ≃
1

M

M∑

m=1

F((Xm
t )t≥0).

Difficulties: (i) high-dimensional problem (N ≫ 1); (ii) X t is a
metastable process and ν is a multimodal measure.
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Introduction
For computing thermodynamics quantities, there is a clear
classification of available methods, and the difficulties are now well
understood (in particular for free energy computations, see for
example [TL, Rousset, Stoltz, 2010]). On the opposite, computing efficiently
dynamical quantities remains a challenge.

Outline of this part:

1. Accelerated dynamics: These methods have been proposed by
A.F. Voter to generate efficiently metastable dynamics.
Mathematical tool: Quasi Stationary Distributions.

2. Adaptive Multilevel Splitting methods: Towards efficient
sampling of reactive paths. Rare event simulation.

Underlying question: how to properly define and quantify
metastability ? Various answers: (i) rate of convergence to
equilibrium; (ii) exit time from metastable states; (iii) decorrelation
time; (iv) asymptotic variance of estimators.
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Accelerated dynamics

• 1- From Langevin to kMC

• 2- From theory to algorithms
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1- From Langevin to kinetic Monte Carlo

C.R. Schwantes, D. Shukla, V.S.Pande, Biophysical Journal, vol. 110, 2016



Introduction Accelerated dynamics Adaptive Multilevel Splitting

Two models for dynamics

The basic modeling ingredient in molecular dynamics: a potential
function V which associates to a configuration
x = (x1, ..., xNatom

) ∈ R
3Natom an energy V (x) ∈ R.

From V , two kinds of dynamics are considered:

• Langevin and over-damped Langevin dynamics: Markov
processes with values in continuous state space ;

• kinetic Monte Carlo model or Markov state model (first order
kinetics): Markov processes with values in discrete state space
(jump Markov process).

Question: Can a mathematically rigorous link be made between
these two kinds of models ?
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Langevin and over-damped Langevin dynamics
Let us introduce the inverse temperature: β−1 = kBT .

The Langevin dynamic writes:

{
dX t = M−1

P t dt,

dPt = −∇V (X t) dt − γM−1
Pt dt +

√
2γβ−1dW t .

In the following, we focus on the over-damped Langevin dynamics

dX t = −∇V (X t) dt +
√

2β−1dW t .

These dynamics are both ergodic wrt the canonical measure:
limt→∞

1

t

∫ t

0
ϕ(X s)ds =

∫
ϕdν where

ν(dx) = Z−1 exp(−βV (x))dx .

Main practical challenge: these dynamics are metastable.
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Metastability: energetic and entropic barriers
A two-dimensional schematic picture
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−→ • Slow convergence of trajectorial averages
• Transitions between metastable states are rare events
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Metastability: a toy example

(a) V = −12.53 (b) V = −11.50 (c) V = −11.48 (d) V = −11.40

Figure: Low energy conformations of the 7 atoms Lennard-Jones cluster.

−→ simulation
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The exit event

Let us consider the overdamped Langevin dynamics:

dX t = −∇V (X t) dt +
√

2β−1dW t

and let assume that we are given an ensemble of subsets of Rd

(states). Let us consider one of them: S ⊂ R
d . The exit event

from S is given by
(τS ,X τS )

where τS = inf{t > 0, X t 6∈ S}.
Objective: build a jump Markov model to simulate the exit event
(τS ,X τS ).

This is useful theoretically (justification of Markov state models and
Eyring-Kramers laws) and numerically (accelerated dynamics à la

Voter).
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Kinetic Monte Carlo
Kinetic Monte Carlo (or Markov state) models are built as follows:

• define exit regions from S: ∂S = ∪J
j=1

∂Sj

• associate a rate kj with an exit through ∂Sj

and then (jump Markov model)

• the exit time τkMC
S is exponentially distributed with parameter∑J

j=1
kj

• the exit region is I kMC
S with law P(I kMC

S = i) = ki∑J
j=1 kj

• I kMC
S and τkMC

S are independent random variables

x1

z1

z2

z3

z4

S

∂S1

∂S2

∂S3∂S4
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Eyring-Kramers laws

Formulas for transition rates. Let us introduce the local minima
(zj)j=1,...,J of V on ∂S , and associated exit regions ∂Si . The
parameters kj are computed using the Eyring-Kramers formula
(Harmonic Transition State Theory):

kHTST
j = νj e

−β[V (zj)−V (x1)]

where νj is an explicit prefactor and x1 = arg minS V .

x1

z1

z2

z3

z4

S

∂S1

∂S2

∂S3∂S4
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A theoretical question

Question: can we relate the exit event (τS ,X τS ) for the original
dynamics with the exit event (τkMC

S , I kMC
S ) for the jump Markov

process?

Two steps:

• Introduce the Quasi-Stationary Distribution

• Consider the small temperature regime β → ∞
(semi-classical limit)
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Step 1: The Quasi-Stationary Distribution
Definition of the QSD: Let X 0 start in the state S. Then there
exists a probability distribution ν with support S such that

lim
t→∞

L(X t |τS > t) = ν

where τS is the first exit time from S.
Remark: Quantitative definition of a metastable exit:

exit time≫ local equilibration time

Fundamental property of the QSD: Starting from ν:

• the first exit time τS is exponentially distributed ;

• and τS is independent of the first hitting point X τS .

Consequence: Starting from ν, the exit event from S can be exactly
written as one jump of a kinetic Monte Carlo model with rates

ki =
P
ν(X τS ∈ ∂Si )

Eν(τS)
.
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Step 2: The small temperature regime
Moreover, one has explicit formulas for E(τS) and the distribution
of X τS . Let us introduce the first eigenstate (λ1, u1) of the
Fokker-Planck operator associated with the dynamics with Dirichlet
boundary conditions on ∂S:

{
div (∇Vu1) + β−1∆u1 = −λ1u1 on S,

u1 = 0 on ∂S.

Then, ν = u1(x)dx∫
S
u1

,

E
ν(τS) =

1

λ1

and

P
ν(X τS ∈ ∂Si ) = −

∫
∂Si

∂nu1 dσ

βλ1

∫
S u1(x) dx

.

Thus, ki = −
∫
∂Si

∂nu1 dσ

βλ1

∫
S
u1(x) dx

.

Can we then show that ki ≃ kHTST
i ?
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Justifying Eyring-Kramers laws

Theorem [Di Gesu, TL, Le Peutrec, Nectoux, 2019]

Under some geometric assumptions, starting from the QSD, in the
limit β → ∞, the exit rates are

ki = ν̃OL
i e−β[V (zi )−V (x1)] (1 + O(β−1))

where

ν̃OL
i =

√
β

2π
∂nV (zi)

√
det(∇2V )(x1)√

det(∇2V|∂S)(zi)
.
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Assumptions (1/2)

• S is an open bounded smooth domain in R
d .

• V : S → R is a Morse function with a single critical point x1.
Moreover, x1 ∈ S and V (x1) = minS V .

• ∂nV > 0 on ∂S and V |∂S is a Morse function with local
minima reached at z1, . . . , zJ with V (z1) < . . . < V (zJ).

• V (z1)− V (x1) > V (zJ)− V (z1)

• ∀i ∈ {1, . . . , J}, consider Bzi the basin of attraction of zi for
the dynamics ẋ = −∇TV (x) and assume that

inf
z∈Bc

zi

da(z , zi) > V (zJ)− V (z1)
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Assumptions (2/2)

Here, da is the Agmon distance:

da(x , y) = inf
γ

∫
1

0

g(γ(t))|γ′(t)| dt

where g =

{
|∇V | in S
|∇TV | in ∂S

, and the infimum is over all piecewise

C1 paths γ : [0, 1] → S such that γ(0) = x and γ(1) = y .

Numerical tests indicate that the assumption

∀i ∈ {1, . . . J}, inf
z∈Bc

zi

da(z , zi) > V (zI )− V (z1)

seems indeed necessay to get the expected results.
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Sketch of the proof (1/3)
The difficult part is to find an approximation for∫
∂Si

∂nu1 =
∫
∂Si

∂nv1e
−βV , where v1 = u1e

βV .
We have {

L(0)v1 = −λ1v1 on W ,

v1 = 0 on ∂W ,

where L(0) = β−1∆−∇V · ∇ is a self adjoint operator on
L2(e−βV ). We are interested in ∇v1 · n, and ∇v1 satisfies





L(1)∇v1 = −λ1∇v1 on W ,

∇T v1 = 0 on ∂W ,

(β−1div −∇V ·)∇v1 = 0 on ∂W ,

where
L(1) = β−1∆−∇V · ∇ − Hess(V ).

Therefore ∇v1 is an eigenvector (eigen-1-form) of −L(1) associated
with the small eigenvalue λ1.
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Sketch of the proof (2/3)

Let Π(p) = 1[0,β−3/2](−L(p)) be the spectral projection operator on
small eigenvalues. We know [Helffer,Sjöstrand] that, for β large,
dim(RanΠ(0)) = 1 and dim(RanΠ(1)) = J:

RanΠ(0) = Span(v1)

RanΠ(1) = Span(ψ1, . . . , ψJ).

Since ∇v1 ∈ RanΠ(1),

∫

∂Si

∂nv1e
−βV =

J∑

j=1

〈∇v1, ψj 〉L2(e−βV )

∫

∂Si

ψj · ne−βV .

The idea is now to build so-called quasi-modes which approximate
the eigenvectors of L(0) and L(1) associated with small eigenvalues
in the regime β → ∞, in order to approximate the terms in the
sum.
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Sketch of the proof (3/3)

• RanΠ(0): an approximation of v1 is given by

ṽ = Z−1χW ′

where W ′ ⊂⊂ W .

• RanΠ(1): an approximation of RanΠ(1) is Span(ψ̃1, . . . , ψ̃J)
where (ψ̃i )1≤i≤J are solutions to auxiliary eigenvalue problems,
attached to the local minima (zi)1≤i≤J .

Two tools:

• Agmon estimates (the support of ψ̃i is essentially in a
neighborhood of zi):

∃N > 0, ‖eβda(zi ,·)/2ψ̃i‖H1(e−βV ) = O(βN).

• WKB approximations:

∃N > 0, ψ̃i ≃ Z−1

i d(eβV /2e−βda(zi ,·)/2)βp .
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Generalizations and perspectives

If the state is metastable, the QSD is a good intermediate between
continuous-state space dynamics and jump Markov models.

We are working on generalizations:

• Broader geometric setting

• Langevin dynamics

• Non-reversible dynamics

The mathematical analysis gives the proper geometric setting under
which the kinetic Monte Carlo model can be built and the
Eyring-Kramers formulas can be used to parameterize it.
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2- From theory to algorithms

A.F. Voter, Annu. Rev. Mater. Res., vol. 32, 2002.
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How to sample efficiently the exit event?

If the process remains sufficiently long in a state, the exit event can
be modeled by one jump of a Markov state model. This can be
used to simulate efficiently the exit event: accelerated dynamics à

la A.F. Voter.

x1

z1

z2

z3

z4

S

∂S1

∂S2

∂S3∂S4

Two steps:

• Estimate the decorrelation time, namely the time to reach the
QSD

• Use the underlying jump Markov process to efficiently sample
the exit event
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Decorrelation time
How long should we wait in practice so that L(X t |τS > t) is close
to the QSD ν?

• Theoretically: exponential decay
‖L(X t |τS > t)− ν‖TV ≤ C (L(X 0)) exp (−(λ2 − λ1)t);

• Numerically: simulate L(X t |τS > t) via interacting particle
system (Fleming-Viot particle system), and test stationarity to
estimate the convergence time to the QSD (Gelman-Rubin
convergence diagnostic).

x1

z1

z2

z3

z4

S

∂S1

∂S2

∂S3∂S4



Introduction Accelerated dynamics Adaptive Multilevel Splitting

The Fleming-Viot particle process
Start N processes i.i.d. from µ0, and iterate the following steps:

1. Integrate (in parallel) N realizations (k = 1, . . . ,N)

dX
k
t = −∇V (X k

t ) dt +
√

2β−1dW
k
t

until one of them, say X
1
t , exits;

2. Kill the process that exits;

3. With uniform probability 1/(N − 1), randomly choose one of
the survivors, X

2
t , . . . ,X

N
t , say X

2
t ;

4. Branch X
2
t , with one copy persisting as X

2
t , and the other

becoming the new X
1
t .

It is known that the empirical distribution [Villemonais]

µt,N ≡ 1

N

N∑

k=1

δ
X

k
t

satisfies:
lim

N→∞
µt,N = L(X t |t < τS).
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Accelerated dyamics

Once the QSD has been reached, there are three ideas to efficiently
sample (τS ,X τS ):

• use parallel architectures to accelerate the sampling: parallel
replica, parsplicing

• raise the minimum of the potential inside the state S (but not
on ∂S): hyperdynamics

• raise the temperature: temperature accelerated dynamics
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The Parallel Replica Algorithm

Perform many independent exit events in parallel [Voter, 1998]

Two steps:

• Distribute N independent initial conditions in S according to
the QSD ν ;

• Evolve N replicas from these initial conditions, consider the
first exiting replica, and multiply the first exit time by the
number of replicas.

S
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The Parallel Replica Algorithm

Why is it consistent?

• Exit time is independent of exit point so that

X
I0

τ
I0
S

L
= X

1

τ1
S
,

where I0 = arg mini (τ
i
S);

• Exit times are i.i.d. exponentially distributed so that, for all N,

N min(τ1
S , . . . , τ

N
S )

L
= τ1

S .

Remark: For this algorithm, one just needs two properties: τS is
exponentially distributed, and independent of the exit point X τS .
The Eyring-Kramers formulas are not used.
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The original Parallel Replica Algorithm

The original parallel replica algorithm is in three steps:

• Decorrelation step with a fixed deterministic decorrelation
time τcorr

• Dephasing step to get N initial conditions i.i.d. with law
the QSD

• Parallel step
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The original Parallel Replica Algorithm

Decorrelation step: run the dynamics on a reference walker...
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The original Parallel Replica Algorithm

Decorrelation step: ... until it remains trapped for a time τcorr .
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The original Parallel Replica Algorithm

Dephasing step: generate new initial conditions in the state.
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The original Parallel Replica Algorithm

Dephasing step: generate new initial conditions in the state.
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The original Parallel Replica Algorithm

Dephasing step: generate new initial conditions in the state.
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The original Parallel Replica Algorithm

Dephasing step: generate new initial conditions in the state.
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The original Parallel Replica Algorithm

Dephasing step: generate new initial conditions in the state.
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The original Parallel Replica Algorithm

Dephasing step: generate new initial conditions in the state.
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The original Parallel Replica Algorithm

Dephasing step: generate new initial conditions in the state.
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The original Parallel Replica Algorithm

Parallel step: run independent trajectories in parallel...
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The original Parallel Replica Algorithm

Parallel step: ... and detect the first transition event.
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The original Parallel Replica Algorithm

Parallel step: update the time clock: Tsimu = Tsimu + NT .



Introduction Accelerated dynamics Adaptive Multilevel Splitting

The original Parallel Replica Algorithm

A new decorrelation step starts...
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The generalized Parallel Replica algorithm
[Binder, Hédin, TL, Simpson, 2015]

1. Run a reference walker, using standard MD.

2. Each time the reference walker enters a state, start a
Fleming-Viot particle process (with N replicas simulated in
parallel) with initial condition the entering point.

3. If the reference walker exits before the Fleming Viot particle
process reaches stationarity go back to 1. Else go to the
parallel step.

4. Parallel step: Starting from the end points of the Fleming-Viot
particle process (approximately i.i.d. with law the QSD), run
independent MD and consider the first exit event. Multiply the
first exit time by N and go back to 1, using the first exit point
as initial condition.

The time at which the Fleming-Viot particle process becomes
stationary is determined using the Gelman-Rubin statistical test.



Introduction Accelerated dynamics Adaptive Multilevel Splitting

The generalized Parallel Replica algorithm

• The algorithm does not require a partition of the state space
but only an ensemble of states.

• The time to reach the QSD is estimated each time the process
enters a new state (it depends on the state and on the initial
condition within the state).
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Numerical results

We tested the generalized Parallel Replica algorithm applied to
biological systems (with Florent Hédin):

• Conformational equilibrium of the alanine dipeptide

• Dissociation of the FKBP-DMSO protein-ligand system

Main differences with materials science: definition of the states
using collective variables, the states do not define a partition, much
more rugged landscapes.

Current implementation within OpenMM, see
https://gitlab.inria.fr/parallel-replica
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Alanine dipeptide (1/5)

Definition of ParRep domains based on a free energy surface: we
study the transition time from C7eq (outside the red rectangle) to

C7ax (inside the red rectangle).
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Alanine dipeptide (2/5)

Cumulative distribution function of the transition time.
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Alanine dipeptide (3/5)

Convergence of the mean transition time.
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Alanine dipeptide (4/5)

Distribution of the correlation times computed by FV.
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Alanine dipeptide (5/5)

tol WT(s) tsim(ns) Speed(ns/day) Eff. speedup (Eff./Max)

0.01 6015 10008 143752 156 70%
0.025 5239 10103 166609 181 80%
0.05 4973 10032 174296 189 84%

Effective speed-up as a function of the tolerance, for N = 224
replicas run in parallel (speed of a reference Langevin dynamics is
921 ns/day).
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FKBP-DMSO (1/4)

FKBP-DMSO complex,
corresponding to the RCSB-PDB entry “1D7H”.
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FKBP-DMSO (2/4)

DMSO in its binding cavity ; distances used to define the cavity.
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FKBP-DMSO (3/4)

Cumulative distribution function of the dissociation times.
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FKBP-DMSO (4/4)

TOL WT(s) tsim(ns) Speed (ns/day) Eff. speedup (Eff./Max)

0.01 85142 403.5 409.4 79.5 56.8%
0.025 79574 457.6 496.8 96.5 68.9%
0.05 84455 482.2 493.4 95.8 68.4%

Effective speed-up as a function of the tolerance, for N = 140
replicas run in parallel (speed of a reference Langevin dynamics is
5.15 ns/day).



Introduction Accelerated dynamics Adaptive Multilevel Splitting

The Parallel Trajectory Splicing algorithm

Precompute the exit events [Perez, Cubuk, Waterland, Kaxiras, Voter, 2015]

Algorithm:

• Simulate in parallel short trajectories which start from the
QSD in a state, and end at the QSD in a state.

• Glue together these short trajectories to build the full
dynamics.
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Hyperdynamics (1/2)

Raise the potential in S to reduce the exit time [Voter, 1997]

Two steps:

• Equilibrate on the biased potential V + δV ;

• Wait for an exit and multiply the exit time τ δVS by the boost

factor B = 1

τδVS

∫ τδVS
0

exp(β δV (X t)) dt.

x1

z1

z2

z3

z4

S

∂S1

∂S2

∂S3∂S4
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Hyperdynamics (2/2)
Why is it consistent ?

Assumptions on δV : (i) δV = 0 on ∂S and (ii) δV is sufficiently
small so that the Theorem above applies.

Recall the formula for the exit rates:

ki = ν̃OL
i e−β[V (zi )−V (x1)] (1 + O(β−1))

where ν̃OL
i =

√
β
2π∂nV (zi)

√
det(∇2V )(x1)√

det(∇2V|∂S )(zi )
.

One easily check that ki/
∑J

j=1
kj is independent of δV and

∑J
j=1

kj(V + δV )
∑J

j=1
kj(V )

=

√
det(∇2(V + δV ))(x1)

det(∇2(V ))(x1)
eβδV (x1)(1 + O(β−1))

=

∫
S

exp(−βV )∫
S

exp(−β(V + δV ))
(1 + O(β−1)) ≃ B
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Temperature Accelerated Dynamics (1/2)

Increase the temperature to reduce the exit time [Sorensen, Voter, 2000]

Algorithm:

• Observe the exit events from S at high temperature ;

• Extrapolate the high temperature exit events to low
temperature exit events.

x1

z1

z2

z3

z4

S

∂S1

∂S2

∂S3∂S4
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Temperature Accelerated Dynamics (2/2)
Recall that, starting from the QSD, the exit event from a given
state S can exactly be modelled using a kinetic Monte Carlo model
with rates

ki = ν̃OL
i e−β[V (zi )−V (x1)] (1 + O(β−1))

where ν̃OL
i =

√
β
2π∂nV (zi)

√
det(∇2V )(x1)√

det(∇2V|∂S )(zi )
.

Thus,

k loi
khii

≃
√
βlo

βhi
exp(−(βlo − βhi )(V (zi )− V (x1))).

Algorithm: observe exit events at high temperature, extrapolate the
rates to low temperature, stop when the extrapolated event will not
modify anymore the low temperature exit event.

Remark: TAD can be seen as a smart saddle point search method.
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Generalizations and perspectives

• The parallel replica is a very versatile algorithm: it applies e.g.

to non reversible dynamics, discrete-in-time dynamics,
continuous-time Markov Chain [Aristoff, Plechac, Wang]. It does not
require estimates of the exit rates.

• Hyper and TAD are more efficient, but require the
temperature to be sufficiently small so that estimates of the
rates by the Eyring-Kramers formulas hold true.

All these techniques require “good” metastable states:
exit time > convergence time to the QSD.
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Conclusion

There are mathematical characterizations of good coarse-graining
representations (spectral gaps, convergence times vs exit times).

Could we use those characterizations together with advanced
learning techniques (auto-encoder, sparse methods) to get better
coarse-grained descriptions?

• Identify slow variables

• Sparse representation of the committor function

• Identify metastable states
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Splitting strategies

• 1- The Adaptive Multilevel Splitting algorithm

• 2- Computing transition times with AMS
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1- The Adaptive Multilevel Splitting algorithm

A B
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Multilevel splitting

General setting: Let (X t)t≥0 be a Markovian dynamics, and τB and
τA two associated stopping times.

Objective: efficiently compute quantities of the form
E[F ((X t)0≤t≤τA∧τB )1τB<τA ] in the rare event setting:

P(τB < τA) ≪ 1.

Two examples:

• Reactive trajectories: A and B are two metastable states, τA
and τB are the first hitting time of A and B .

• Killed process: τA is a killing time, τB is the first hitting time
of a domain B .
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Motivation 1: Simulations of biological systems
Unbinding of a ligand from a protein

Elementary time-step for the molecular dynamics = 10−15 s

Dissociation time ≃ 0.02 s

Challenge: bridge the gap between timescales
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Motivation 2: Radiation protection
Monte Carlo particle transport

Concrete tunnel with a neutron source

How to compute the neutron flux at the detector ?

Challenge: the flux is very small
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Multilevel splitting: the reactive trajectory setting

We would like to sample trajectories between two given metastable
states A and B . The main assumption is that we are given a
smooth one dimensional function ξ : Rd → R which "indexes" the
transition from A to B in the following sense:

A ⊂ {x ∈ R
d , ξ(x) < zmin} and B ⊂ {x ∈ R

d , ξ(x) > zmax},

where zmin < zmax, and Σzmin
(resp. Σzmax

) is “close” to ∂A (resp.
∂B).

Example: ξ(x) = ‖x − xA‖ where xA is a reference configuration in A.

We are interested in the event {τA < τB}, starting from an initial
condition with support in {x ∈ R

d , ξ(x) < zmin}, where

τA = inf{t > 0, X t ∈ A}, τB = inf{t > 0, X t ∈ B}.
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Multilevel splitting

Objective: Simulate efficiently trajectories which reach B before A

and estimate P(τB < τA). This then gives dynamical information:
reactive trajectories from A to B , transition times from A to B , ...

We present a multilevel splitting approach [Kahn, Harris, 1951] [Rosenbluth,

1955] to discard failed trajectories and branch trajectories
approaching the rare set. We focus on an adaptive variant [Cérou,

Guyader, 2007] [Cérou, Guyader, TL, Pommier, 2010]: the Adaptive Multilevel
Splitting (AMS) algorithm.

Remark: The algorithm can be seen as a kind of adaptive Forward Flux

Sampling [Allen, Valeriani, Ten Wolde, 2009]. It is also related to the Interface

Sampling Method [Bolhuis, van Erp, Moroni 2003] and the Milestoning method

[Elber, Faradjian 2004]. See the review paper [Bolhuis, Dellago, 2009]
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Reactive trajectory

A reactive trajectory between two metastable sets A and B is a
piece of equilibrium trajectory that leaves A and goes to B without
going back to A in the meantime [Hummer,2004] [Metzner, Schütte, Vanden-Eijnden,

2006].

A B

Difficulty: A trajectory leaving A is more likely to go back to A

than to reach B .
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Splitting algorithm: basic idea

The idea of splitting algorithms (FFS, RESTART, ...) is to write the
rare event

{τB < τA}
as a sequence of nested events: for zmin = z1 < . . . < zQ = zmax,

{τz1 < τA} ⊃ {τz2 < τA} ⊃ . . . ⊃ {τzmax
< τA} ⊃ {τB < τA}

where τz = inf{t > 0, ξ(X t) > z} and to simulate the successive
conditional events: for q = 1, . . . ,Q − 1,

{τzq+1 < τA} knowing that {τzq < τA}.

It is then easy to build an unbiased estimator of

P(τB < τA) = P(τz1 < τA)P(τz2 < τA|τz1 < τA) . . . P(τB < τA|τzmax
< τA)
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Splitting algorithm: adaptive level computation
Problem: How to choose the intermediate levels (zq)q≥1 ?

In an ideal setting, for a given number of intermediate levels, the
optimum in terms of variance is attained if

∀q ≥ 1, P(τzq < τA|τzq−1 < τA) = P(τz2 < τA|τz1 < τA).

This naturally leads to an adaptive version (AMS, nested sampling)

where the levels are determined by using empirical quantiles: Fix
k < n; at iteration q ≥ 1, given n trajectories (X ℓ

t∧τA
)t>0,ℓ=1,...,n in

the event {τzq−1 < τA}, choose zq so that

P(τzq < τA|τzq−1 < τA) ≃
(

1 − k

n

)
.

The level zq is the k-th order statistics of supt≥0 ξ(X
ℓ
t∧τA

):

sup
t≥0

ξ(X
(1)
t∧τA) < . . . < sup

t≥0

ξ(X
(k)
t∧τA) =: zq < . . . < sup

t≥0

ξ(X
(n)
t∧τA).
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AMS: estimator of the rare event probability (1/2)

Let Qiter be the number of iterations to reach the level zmax:

Qiter = min{q ≥ 0, zq > zmax}

(where z0 is the k-th order statistics of the n initial trajectories). Then,
one obtains the estimator:

(
1 − k

n

)Qiter

≃ P(τzmax
< τA).
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AMS: estimator of the rare event probability (2/2)

At iteration Qiter, one has an ensemble of n trajectories such that
τzmax

< τA. Thus

p̂corr :=
1

n

n∑

ℓ=1

1{TB (X
ℓ,Qiter)<TA(X

ℓ,Qiter)} ≃ P(τB < τA|τzmax
< τA).

p̂corr is the number of trajectories reaching B before A at the last
iteration Qiter.

Therefore, an estimator of P(τB < τA) is

(
1 − k

n

)Qiter

p̂corr.
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AMS Algorithm

A B
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AMS Algorithm

A B
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AMS Algorithm: the case of Markov chains

In practice, the dynamics are discrete in time and thus, it may
happen that more than k trajectories are such that

sup
t≥0

ξ(X ℓ
t∧τA

) ≤ sup
t≥0

ξ(X
(k)
t∧τA) =: zq

In this case, all the trajectories with maximum level smaller or equal
than zq should be discarded.

The actual estimator of P(τB < τA) thus reads:

p̂ =

(
1 − K1

n

)
. . .

(
1 − KQiter

n

)
p̂corr

instead of
(
1 − k

n

)Qiter

p̂corr, where Kq ≥ k is the effective number
of discarded trajectories at iteration q.
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AMS Algorithm: unbiasedness

Theorem [C.-E. Bréhier, M. Gazeau, L. Goudenège, TL, M. Rousset, 2016]: For any
choice of ξ, n and k ,

E(p̂) = P(τB < τA).

The proof is based on Doob’s stopping theorem on a martingale
built using filtrations indexed by the level sets of ξ. Actually, this
result is proved for general path observables and in a much more
general setting.

Practical counterparts:

• The algorithm is easy to parallelize.

• One can compare the results obtained with different reaction
coordinates ξ to gain confidence in the results.
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Computing transition times
To use the algorithm to compute transition times, we split a
transition path from A to B into: excursions from ∂A to Σzmin

and
then back to ∂A, and finally an excursion from ∂A to Σzmin

and
then to B . Assuming that A is metastable (p ≪ 1), it can be
shown that the equilibrium mean transition time can be
approximated by (see the second part of this talk):

(
1

p
− 1

)
∆Loop +∆React

where:

• p is the probability, starting from Σzmin
“at equilibrium”, to go

to B rather than A (approximated by p̂) ;

• ∆Loop is the mean time for an excursion from ∂A to Σzmin
and

then back to ∂A (approximated by brute force) ;

• ∆React is the mean time for an excursion from ∂A to Σzmin

and then to B (approximated by the AMS algorithm).
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Numerical results: a 2D example
Time-discretization of the overdamped Langevin dynamics:

dX t = −∇V (X t) dt +
√

2β−1dW t

with a deterministic initial condition X 0 = x0 and the 2D potential
[Park, Sener, Lu, Schulten, 2003] [Metzner, Schütte and Vanden-Eijnden, 2006]
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A 2D example
The interest of this “bi-channel” potential is that, depending on the
temperature, one or the other channel is prefered to go from A

(around H− = (−1, 0)) to B (around H+ = (1, 0)).

Three reaction coordinates: ξ1(x , y) = ‖(x , y) − H−‖,
ξ2(x , y) = C − ‖(x , y) − H+‖ or ξ3(x , y) = x .

We plot as a function of the number N of independent realizations
of AMS, the empirical average

pN =
1

N

N∑

m=1

p̂m

together with the associated empirical confidence interval:
[pN − δN/2, pN + δN/2] where

δN = 2
1.96√
N

√√√√ 1

N

N∑

m=1

(p̂m)2 − (pN)
2
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A 2D example: flux of reactive trajectories
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A 2D example: k = 1, n = 100, β = 8.67
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A 2D example: k = 1, n = 100, β = 9.33
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A 2D example: k = 1, n = 100, β = 10
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A 2D example

Observations:

• When N is sufficiently large, confidence intervals overlap.

• For too small values of N, “apparent bias” is observed [Glasserman,

Heidelberger, Shahabuddin, Zajic, 1998].

• Fluctuations depend a lot on ξ.

−→ To gain confidence in the results, check that the estimated
quantity is approximately the same for different ξ’s.
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“Apparent bias” phenomenon

The apparent bias is due to the fact that [Glasserman, Heidelberger,

Shahabuddin, Zajic, 1998]:

• Multiple pathways exist to go from A to B .

• Conditionally to reach Σz before A, the relative likelihood of
each of these pathways depends a lot on z .

On our example, for small n, we indeed observe that (for ξ3):

• Most of the time, all replicas at the end go through only one
of the two channels (two possible scenarios).

• One of this scenario is rare.

• The values of p̂ associated to each of these two scenarios are
very different.

This explains the large fluctuations.
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“Apparent bias” phenomenon

Another 2D test case:
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“Apparent bias” phenomenon
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Results on larger test cases

We are currently implementing AMS in the NAMD software
(collaboration with SANOFI, C. Mayne and I. Teo, PhD of L. Silva
Lopes with J. Hénin).

Three test cases:

• Alanine di-peptide (test case)

• benzamidine-trypsin dissociation rate

• β-cyclodextrin (in progress)
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Alanine di-peptide (1/6)

Two reaction coordinates:

• ξ1 is a continuous piecewise affine function of ϕ

• ξ2(ϕ,ψ) = min(dA(ϕ,ψ), 6.4) − min(dB(ϕ,ψ), 3.8)

Computational setting: no solvent, force field: CHARMM27. AMS with

n = 500 to 1000 replicas and k = 1.
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Alanine di-peptide (2/6)

Free energy landscape and zones A (yellow) and B (black).
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Alanine di-peptide (3/6)

Probability estimations using different initial conditions: D=DNS,
1=ξ1, 2=ξ2.
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Alanine di-peptide (4/6)

Flux of reactive trajectories, starting from two different initial
conditions.
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Alanine di-peptide (5/6)

Transition time obtained for two values of zmin: D=DNS, 1=ξ1,
2=ξ2. Reference value obtained by DNS over a 97 DNS simulations
of 2µs.
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Alanine di-peptide (6/6)

Estimate of the committor function using AMS.
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Benzamidine-trypsin (1/2)
We recently used AMS to estimate the off rate of benzamidine
from trypsin [I. Teo, C. Mayne, K. Schulten and TL, 2016].
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Benzamidine-trypsin (2/2)

We obtain a dissociation rate koff = (260 ± 240)s−1 within the
same order of magnitude as the experimentally measured rate
(600 ± 300)s−1.

The overall simulation time taken, summed over all 1000 replicas,
was 2.1µs (2.3µs after including direct MD and steered MD
simulations), which is four orders of magnitude shorter than the
estimated dissociation time of one event.

The main practical difficulty seems to be the determination of a
’good’ domain A.

Computational setting: 68 789 atoms, with 21 800 water molecules, 62

sodium ions, and 68 chloride ions. Water: TIP3P model. CHARMM36

force field, with parameters for benzamidine obtained from the CGenFF

force field. NPT conditions, at 298 K and 1 atm Langevin thermostat

and barostat settings, using 2 fs time steps. AMS with n = 1000 replicas

and k = 1.
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Another example: Radiation protection (1/2)
Monte Carlo particle transport

Concrete tunnel with a neutron source

How to compute the neutron flux at the detector ?

Challenge: the flux is very small
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Another example: Radiation protection (2/2)
Example 2: In collaboration with CEA (Eric Dumonteil, Cheikh
Diop and Henri Louvin), AMS is now implemented in the Tripoli
code.
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Concluding remarks on AMS (1/2)

Practical recommendations:

• A careful implementation of the splitting step leads to
unbiased estimators for non-normalized quantities.

• Perform many independent realizations of AMS.

• Use ξ as a numerical parameter.

The algorithm is very versatile:

• Non-intrusivity: the MD integrator is a black box.

• Can be adapted to generate trajectories of any stopped
process.

• Can be applied to both entropic and energetic barriers, to
non-equilibrium systems, non-homogeneous Markov process,
random fields, ...

• Algorithmic variants: other resampling procedure, additional
selection, ...
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Concluding remarks on AMS (2/2)

Works in progress:

• Implementations and tests in the NAMD software (collaboration with

SANOFI, C. Mayne and I. Teo), and in TRIPOLI (collaboration with CEA)

• Adaptive computation of better and better ξ.

• Analysis of the efficiency as a function of ξ. For optimal choice
of ξ, the cost of AMS is (for n large)

(
(log p)2 − log p

)

much better than the cost of naive Monte Carlo: 1−p
p

. How does this degrade
when ξ departs from the optimal case ?
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2- Computing transition times with AMS

B

A



Introduction Accelerated dynamics Adaptive Multilevel Splitting

Transition time
Let us consider an ergodic stochastic continuous in time process
(Xt)t≥0 in R

d , and two disjoint subsets A ⊂ R
d and B ⊂ R

d . The
objective is to compute the mean transition time at equilibrium
from A to B , denoted by ∆A→B .

B

A

Remark: we are also interested in any statistical property of the
equilibrium reactive paths from A to B .
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Metastability
Examples: Molecular dynamics (A and B are defined in positions space)

• Langevin dynamics (M mass matrix, γ > 0, β = (kBT )−1)
{

dQt = M−1Pt dt,

dPt = −∇V (Qt) dt − γM−1Pt dt +
√

2γβ−1dWt ,

ergodic wrt ν(dq)⊗ Z−1
p exp

(
−β ptM−1p

2

)
dp with

dν = Z−1 exp(−βV (q)) dq,

where Z =
∫

exp(−βV ).

• over-damped Langevin dynamics

dXt = −∇V (Xt) dt +
√

2β−1dWt ,

which is also ergodic wrt ν.

Challenge: A and B are typically metastable states, so that
observing transitions from A to B is a rare event.
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From continous time to discrete time

Σ

A

B

Let Σ be a co-dimension 1 submanifold in-between A and B . Then,
(Yn)n≥0 is the sequence of successive intersections of (Xt)t≥0 with
A = ∂A or B = ∂B , while hitting Σ in-between.
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From continous time to discrete time

More precisely:
Yn = Xτn

where
τΣn = inf{t > τn−1,Xt ∈ Σ}

τn = inf{t > τΣn , Xt ∈ A ∪ B}.
The Markov chain (Yn)n≥0 is with values in A∪ B, with kernel:

∀x ∈ A ∪ B, ∀C ⊂ A ∪ B,

K (x ,C ) =

∫

z∈Σ
P
x(XτΣ1

∈ dz)Pz(Xτ1 ∈ C ) dz .
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Reactive entrance distribution
Let us define the successive entrance times in A and B [Lu, Nolen, 2013]

[E, Vanden Eijnden, 2006]:

TA
k+1 = inf{n > TB

k , Yn ∈ A}

TB
k+1 = inf{n > TA

k+1, Yn ∈ B}.
The reactive entrance distribution in A at equilibrium is defined by:

νE = lim
K→∞

ν̂E ,K

where

ν̂E ,K =
1

K

K∑

k=1

δY
TA
k

.

Remark: νE is independant on the choice of Σ and is also the
reactive entrance distribution for the original continuous time
process.
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Back to the mean transition time

The mean transition time at equilibrium is (strong Markov property):

∆A→B = E
νE

(
TB−1∑

n=0

∆(Yn)

)

where
TB = inf{n ≥ 0, Yn ∈ B}

and for all x ∈ A,
∆(x) = E

x(τ1).

Remark: Notice that

∆(x) = E
x(τ11Y1∈A) + E

x(τ11Y1∈B)

is the average time of loop from x back to A when Y1 ∈ A and the
average time of a reactive trajectory from x to B when Y1 ∈ B.



Introduction Accelerated dynamics Adaptive Multilevel Splitting

Summary

Objective: Given a discrete-time Markov chain (Yn)n≥0 with values
in A ∪ B and a bounded measurable function f : A → R, estimate:

E
νE

(
TB−1∑

n=0

f (Yn)

)
.

Two challenges: The sets A and B are metastable, so that (i) TB is
very large, and (ii) νE is difficult to sample.

Ideas: For (i), use rare event sampling method (forward flux sampling -FFS- or

adaptive multilevel splitting -AMS-). For (ii), use the fact that A is metastable:
the process (Yn)n≥0 reaches “equilibrium within A” (quasi stationary

distribution) before transitioning to B.
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Assumptions and notation

Assumptions: In the following, we assume that the Markov chain
(Yn)n≥0 satisfies the following hypothesis:

[A1] (Yn)n≥0 is weak-Feller meaning that (Kf ) ∈ C(A ∪ B,R)
whenever f ∈ C(A ∪ B,R).

[A2] (Yn)n≥0 is positive Harris recurrent, and π0 denotes its unique
stationary probability measure.

[A3] π0(A) > 0 and π0(B) > 0.

All these assumptions are satisfied for the discrete processes built
from the Langevin or overdamped Langevin dynamics.

Notation: In the following we use the block-decomposition of the

kernel K of the chain (Yn)n≥0 over A ∪ B: K =

[
KA KAB

KBA KB

]
.
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The Hill relation

[Kramers, 1940]
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The π-return process and the Hill relation

Let π be a probability measure on A. The π-return process
(Y π

n )n≥0 is the Markov chain with values in A and transition
kernel: ∀x ∈ A, ∀C ⊂ A,

Kπ(x ,C ) = P
x(Y1 ∈ C ,TB > 1) + P

x(Y1 ∈ B)π(C ).

In words, (Y π
n )n≥0 is the chain (Yn)n≥0 “reset to π” each time Yn

enters B.
Lemma. (Y π

n )n≥0 admits a unique stationary distribution, denoted
by R(π), where

R(π) =
π(IdA − KA)

−1

Eπ(TB)
.

Remark: Such processes are typically used in MD when people
introduce a sink in B and a source in A to create a non-equilibrium
flux from A to B [Farkas, 1927] [Kramers, 1940], Weighted Ensemble [Zuckerman,

Aristoff], Milestoning [Elber, Vanden Eijnden], TIS [Bolhuis, Van Erp].
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The π-return process and the Hill relation
We are now in position to state the Hill relation [Hill, 1977] [Aristoff, 2018].
Proposition. For any bounded measurable function f : A → R,

E
π

(
TB−1∑

n=0

f (Yn)

)
=

R(π)f

PR(π)(Y1 ∈ B) .

Remark: If R(π) is easy to sample, the RHS is typically easier to
compute, since it only involves one step of (Yn).

Application of the Hill relation to π = νE
Lemma. The probability measure R(νE ) is the stationary
distribution π0 restricted to A:

R(νE ) =
π01A
π0(A)

=: π0|A.

As a consequence,

E
νE

(
TB−1∑

n=0

f (Yn)

)
=

π0|A(f )

P
π0|A(Y1 ∈ B) .
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The Hill relation to compute ∆A→B

Back to the mean transition time:

E
νE

(
TB−1∑

n=0

∆(Yn)

)
= ∆Loop(π0|A)

(
1

PReact(π0|A)
− 1

)
+∆React(π0|A)

where

• ∆Loop(π0|A) = E
π0|A(τ1|Y1 ∈ A) is the mean time for a loop

from π0|A back to A (computed by brute force Monte Carlo)

• ∆React(π0|A) = E
π0|A(τ1|Y1 ∈ B) is the mean time of a

reactive trajectory from π0|A to B (computed by FFS/AMS)

• PReact(π0|A) = P
π0|A(Y1 ∈ B) is the probability to get a

reactive traj. starting from π0|A (computed by FFS/AMS)

The difficulty is that π0 and, a fortiori, π0|A are in general unknown
and difficult to sample.
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Summary

The formula

E
νE

(
TB−1∑

n=0

f (Yn)

)
=

π0|A(f )

P
π0|A(Y1 ∈ B)

is not practical since π0|A is difficult to sample.

Hope: since A is metastable, maybe it is not needed to sample νE
or π0|A since, typically, the process will reach a local equilibrium
within A before going to B.
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A practical algorithm

A B
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The quasi-stationary distribution (QSD)
Lemma. Under the assumptions above, the process (Yn)n≥0 admits
a quasi-stationary distribution (QSD) νQ in A, namely a probability
measure νQ over A such that: ∀C ⊂ A,

νQ(C ) = P
νQ (Y1 ∈ C |TB > 1).

In the following, we assume that

[B] (Yn)n≥0 admits a unique quasi-stationary distribution νQ .

Properties of the QSD:

• For any intial condition x ∈ A, for any C ⊂ A,

lim
n→∞

P
x(Yn ∈ C |n < TB) = νQ(C ).

• The νQ-return process admits νQ as an invariant distribution:

R(νQ) = νQ .
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The Hill relation applied to π = νQ

As a consequence

E
νQ

(
TB−1∑

n=0

f (Yn)

)
=

νQ(f )

PνQ (Y1 ∈ B) .

Remark: Starting from νQ , TB is geometrically distributed, with
parameter PνQ (Y1 ∈ B) = PReact(νQ).

Back to the mean transition time [Cérou, Guyader, TL, Pommier, 2011]:

E
νQ

(
TB−1∑

n=0

∆(Yn)

)
= ∆Loop(νQ)

(
1

PReact(νQ)
− 1

)
+∆React(νQ)

What did we gain, compared to π = νE? The probability
distribution νQ can be sampled by brute force Monte Carlo.
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The algorithm to compute ∆A→B

In practice:

• Simulate the process (Xt)t≥0 (or (Qt ,Pt)t≥0 in a
neighborhood of A, registering the successive loops from A

to Σ. This gives samples distributed according to νQ , and
∆Loop(νQ).

• Use AMS to simulate reactive trajectories, starting from the
QSD νQ . This gives an estimate of PReact(νQ).

Remark: Typically, one has PReact(νQ) ≪ 1 and

∆React(νQ) ≪ ∆Loop(νQ)
PReact(νQ)

so that

E
νQ

(
TB−1∑

n=0

∆(Yn)

)
≃ ∆Loop(νQ)

PReact(νQ)
.

This is the formula used in FFS to compute transition times [Allen,

Valeriani, ten Wolde, 2009].
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Error analysis

∣∣∣∣∣∣

E
νE
(∑TB−1

n=0
f (Yn)

)
− E

νQ
(∑TB−1

n=0
f (Yn)

)

EνE

(∑TB−1

n=0
f (Yn)

)

∣∣∣∣∣∣
≪ 1?
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Error analysis

In practice, we thus compute E
νQ
(∑TB−1

n=0
f (Yn)

)
instead of the

truth E
νE
(∑TB−1

n=0
f (Yn)

)
.

Objective: Quantify the relative error

ERR =

∣∣∣∣∣∣

E
νE
(∑TB−1

n=0
f (Yn)

)
− E

νQ
(∑TB−1

n=0
f (Yn)

)

EνE

(∑TB−1

n=0
f (Yn)

)

∣∣∣∣∣∣
.

as a function of how large is the transition time wrt the
convergence time to the QSD.
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Transition time

The time to observe a transition to B is measured by

1

p+

where p+ = supx∈A P
x(Y1 ∈ B).

Remark: One obviously has, for any x ∈ A,

1

p+
≤ E

x(TB).
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Convergence time to the QSD
The convergence time to the QSD, starting from νE is measured by:

TE
Q = ‖νEH‖TV

where

Hf (x) = E
x

(
TB−1∑

n=0

(f (Yn)− νQ f )

)

= E
x

(
∞∑

n=0

(
f (Y

νQ
n )− νQ f

)
)

Why can TE
Q be seen as a convergence time to the QSD?

For any f and for all n ≥ 0,

E
νE
(
f (Y

νQ
n )− νQ f

)
= E

νE (f (Yn)− νQ f |TB > n)PνE (TB > n)

and thus

TE
Q ≤

∞∑

n=0

‖LνE (Yn|TB > n)− νQ‖TV .
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Error analysis

Proposition. Assume that p+TE
Q < 1. Then,

ERR ≤
p+TE

Q

1 − p+TE
Q

(
1 +

‖f ‖∞
|π0|A(f )|

)
.

This shows that the error is small if the transition time is large
compared to the convergence time to the QSD, i.e.

1

p+
≫ TE

Q .

Remark: We have checked on examples that the upper bound is
sharp in various ways. In particular, one cannot replace p+ by
PReact(νQ) nor by PReact(νE ) in the RHS.
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Example: the geometrically ergodic case

In the context of the over-damped Langevin dynamics, one can
show that: ∃α > 0,∃ρ ∈ (0, 1),∀x ∈ A,∀n ≥ 0,

‖Lx(Yn|TB > n)− νQ‖TV ≤ αρn.

In this case,
TE
Q ≤ α

1 − ρ

which goes to zero when α→ 0.



Introduction Accelerated dynamics Adaptive Multilevel Splitting

Conclusion (1/2)

We now have a good understanding of the formula which is used by
many algorithms (FFS, AMS and the “source and sink methods”:
TIS, WE, milestoning) to compute the mean transition time:

• These methods are exact if the process is initialized in the
initial state with the correct distribution: the reactive entrance
distribution

• The reactive entrance distribution can be replaced by the QSD
if A is metastable.
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Conclusion (2/2)

Current research directions:

• We analyzed the bias, and not the variance or the efficiency of
the whole procedure. This should be possible, at least in
simple prototypical cases, and maybe give some hints on good
choices for some numerical parameters (position of Σ).

• In practice, it is observed that the initial conditions that indeed
yield a transition to B are concentrated on some parts of the
boundary ∂A. We are currently working on good sampling
methods for these initial conditions.

The problem is typically not to replace νE by νQ , but to sample νQ
correctly.
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Simulating dynamics: conclusions (1/2)

There are other mathematical settings to characterize / quantify
metastability:

• Large deviation techniques [Freidlin, Wentzell, Vanden Eijnden, Weare,

Touchette,...] and Onsager-Machlup functionals [Stuart, Pinsky, Theil]

• Potential theoretic approaches [Bovier, Schuette, Hartmann,...]

• Spectral analysis of the Fokker Planck operator on the whole
space and semi-classical analysis [Schuette, Helffer, Nier, Pavliotis]
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Simulating dynamics: conclusions (2/2)

There are actually many numerical techniques:

• Going from state A to state B:
• Local search: the string method [E, Ren, Vanden-Eijnden], max flux

[Skeel], transition path sampling methods [Chandler, Bolhuis, Dellago],
• Global search, ensemble of trajectories: AMS, transition

interface sampling [Bolhuis, van Erp], forward flux sampling [Allen,

Valeriani, ten Wolde], milestoning techniques [Elber, Schuette,

Vanden-Eijnden]

• Importance sampling approaches on paths, reweighting [Dupuis,

Vanden-Einjden, Weare, Schuette, Hartmann]

• Accelerated dynamics techniques and state to state dynamics
[Voter, Perez, Henkelman]

• Saddle point search techniques [Mousseau, Henkelman] and graph
exploration

• Starting from a long trajectory, extract states: clustering,
Hidden Markov chain [Schuette]
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Summary of the algorithms we have discussed

Sampling the canonical distribution:

• Thermodynamic integration: constrained sampling.

• Free energy adaptive biasing methods: importance sampling
with an importance function computed on the fly.

Sampling metastable trajectories and rare events:

• Accelerated dynamics algorithms: parallel replica,
hyperdynamics, temperature accelerated dynamics.

• Splitting methods: Adaptive Multilevel Splitting.


	Introduction
	Accelerated dynamics
	Adaptive Multilevel Splitting

